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The stability of plane shock waves is treated by examining the amplitudes of acoustic waves reflected from 
shock fronts, and by methods of irreversible thermodynamics. Both approaches yield the same conditions 
for stability, -1 5; j2(dVldP)H5; I, where j2 is the negative slope of the Rayleigh line, and the derivative is 
taken along the Hugoniot P- V curve. The thermodynamic method indicates that instabilities are associated 
either with local maxima in the entropy, or shock velocity; or with local minima in the reduced internal 
energy, or particle velocity, along the Hugoniot curve. It is proposed that the latter case corresponds to 
detonation with the detonation state given by the particle velocity minimum. 

I. INTRODUCTION 

Earlier studies of the stability of shock waves have 
established the existence of two limits outside which a 
shock splits spontaneously into two waves traveling in 
the same or in opposite directions. Bethe first derived 
sufficient conditions for plane shocks to be stable against 
such breakup. 1 Later studies by D'yakov,2 and by Er­
penbeck,3 based on analysis of the stability with respect 
to two-dimensional perturbations also established two 
bounds; these were shown by Gardner to be equivalent 
to Bethe's criteria for plane shocks. 4, 5 

In this paper we consider a region within the above 
limits in which a shock is evidently potentially unstable 
for other reasons. We show that in this region small 
amplitude acoustic waves incident on the shock front 
from the compressed region behind the front undergo 
amplification upon reflection at the front. This can lead 
to an oscillatory type of instability proposed earlier, 6 

although it is not clear from this treatment that insta­
bility necessarily occurs when the amplification criteri­
on is satisfied. 

We have also approached the stability problem from 
the point of view of irreversible thermodynamics and 
shOW, based on a plausible hypothesis, that in the re­
gion under consideration a shock is thermodynamically 
unstable; whether or not instability actually occurs de­
pends on the magnitude of perturbations. The acoustic 
wave approach and the thermodynamic approach thus 
exhibit a nice correspondence. 

Technical interest in the shock stability problem de­
rives from applications in which it is desired to relate 
wave propagation behavior to properties of the trans­
mitting medium. In solids, for example, polymorphic 
phase changes and yielding at the elastic limit may lead 
to splitting of a single shock into two shocks traveling in 
the same direction. In reactive media, self-sustaining 
waves or detonation waves, may form under conditions 
that are not well understood. 

The problem is also of exceptional theoretical inter­
est because of the existence of several apparently dis­
tinct methods of approach, as has been pointed out by 
Woods. 7 The theory of irreversible thermodynamics is 
well known to be underdeveloped, and it may be hoped 
that new insight into the theory will result from applica­
tion of various methods to a relatively simple problem 
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such as that of plane shock waves. 

The thermodynamic method employed here invokes no 
new principles but requires the recognition that the ap­
proach to equilibrium of two systems initially out of 
equilibrium is characterized by nonnegative entropy 
production in each system. This can be expressed, at 
least for adiabatic, viscous flow, by an upper as well 
as a lower bound to the entropy production rate. Still 
another statement is that the reduced internal energy 
(defined later) is minimized and the entropy is maximized 
in equilibrium. These latter statements are not, in 
general, equivalent; one does not imply the other. 

The thermodynamic method predicts a new criterion 
for detonation that is quite different from the Chapman­
Jouguet Theory. We postulate this criterion in Sec. V. 

In Sec. II we display the jump conditions and several 
definitions and transformations that are useful. Section 
III is a summary of the conclusions of the Bethe-D'yakov 
theory. The interaction of acoustic waves with the shock 
front is considered in Sec. IV and the thermodynamic 
approach is presented in Sec. V. 

II. JUMP CONDITIONS 

The well-known Rankine-Hugoniot jump conditions ap­
plicable to plane shocks with steady profile or to discon­
tinuous jumps can be written, 6 

u-uo=Po(U-uo)(Vo-V) , 

a-Po=po(U-uo)(u-uo) , 

E - Eo=~ (a+Po)(Vo - V) . 

(1) 

(2) 

(3) 

These equations express conservation of mass, mo­
mentum, and energy, respectively. Mass velocity is 
denoted by u, shock velocity by U, specific volume by 
V=p-t, normal stress in the direction of propagation by 
a (measured positive in compression), and specific in­
ternal energy by E. Subscripts 0 refer to the undis­
turbed state ahead of the shock, assumed to be a ther­
modynamic equilibrium state. The mechanical condi­
tions, Eqs. (1) and (2) require no assumption about 
thermodynamic equilibrium and apply throughout the 
shock transition region; hence, the use of a to denote 
stress rather than P which is used to denote the pres­
sure of thermodynamic equilibrium states. Equation 
(3) is valid whenever no other sources of energy besides 

Copyright © 1976 American I nstitute of Physics 227 



-

mechanical energy are assumed. 

Since a shock is an adiabatic process, Eq. (3) applies 
to equilibrium end states; it only applies to the shock 
transition region, however, when heat conduction and 
radiation in that region can be neglected. Equation (3) 
is termed the Hugoniot relation and, for given (po, Yo, 
Eo), defines a surface, 

<1=<1(V,E;Po, Vo,Eo) (V* Yo) , 

that represents the locus of states achievable by a shock 
transition in any medium. 

For the description of shocks in a specific medium, 
Eqs. (1)-(3) are supplemented by the equilibrium equa­
tion of state of the medium in the form 

P=P(V,EjEo) • (4) 

The simultaneous solution of Eqs. (3) and (4), with 
<1=P, yields a curve P(V} termed the "Hugoniot equa­
tion of state," or sometimes the "R-H curve." 

We define several useful quantities 

j = Po(U - uo) , 

whence, from Eqs. (1) and (2), 

/=(<1-Po)/(Vo- V) • 

Also, 

M= I(U-u)/cl 

and 

c2=(ap) =_V2(8P) • 
ap s av s 

(5) 

(6) 

(7) 

(8) 

The quantity j is the mass flux through the shock front 
and is positive when the shock velocity exceeds the ini­
tial mass velocity uo. Its square j2 is also equal to the 
negative slope of the Rayleigh line joining the end states. 
The quantity M is the local Mach number of the shock 
with respect to the medium, and c is the local sound 
speed in spatial coordinates. The subscript s denotes 
the isentropic derivative. 

Several combinations of these relations yield useful 
transformations. Thus, combining Eqs. (1), (2), and (6), 

(u-uo)2=(<1-po)(vo-v)=l(Vo-V)2. (9) 

This can be differentiated to give 

2(u - uo)du = - (<1- Po)dV + (Vo - V)d<1 , 

or, using Eq. (9), 

j(:~t =±~p _j2(:;)J, (10) 

where the subscript H denotes differentiation along the 
Hugoniot curve. 

For definiteness we consider only compressive shocks 
traveling in the positive direction, so that, 

j>O; V < Voj and u>u o. 

As a result of this assumption we retain only the posi­
tive sign in Eq. (10). 

An alternate expression for Eq. (7) can be derived, 
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using Eqs. (5), (8), and (9), 

M2_lu-uI2 [Voj-(VO-V)j]2 
- C - V 2(ap/8V)s 

=_l(8V) • 
ap s 

(11) 

For small amplitude acoustic waves we make use of 
the characteristic equations and associated compatibility 
conditions8 

C±: dx/dt=u±c (12a) 

and 

r'f, or S±: dP/du =± pc • (12b) 

The upper sign of Eq. (12b) holds across forward-facing 
waves, specified by the positive sign of Eq. (12a). Thus, 
r+ is valid on the characteristic path C+, and r- holds 
on C-. For acoustic waves the flow is assumed to be 
isentropic, and we therefore adopt the obvious notation 
for these waves 

(:~ t = ± (V / c) • 

Combining this with Eqs. (6) and (11) gives, 

(dU) =± (_ aV)1/2 
\dP s ap s 

=± (M/j) • (13) 

Still another useful relation can be obtained by writ­
ing the slope of the Hugoniot curve as a directional de­
rivative, 

and employing Eq. (3), which differentiated is, with 
<1=P, 

Thus, 

However, on the equilibrium surface, 

The Grlineisen parameter is 

r = v(ap/aE)y • 

Hence, equating the two expressions for (ap/aV)E, 

fdV) _ 1- (r /2V}(Vo - V) 
\dP H - (ap/av)s + (r /2V)(P - po) . 

This can be simplified by the substitution 

a=(r/2V)(Vo- V) , 

together with Eq. (11). We get 

j2(dV/dP)H=M2(a-1) / (1-M2a) • 

A graph of this equation is shown in Fig. 1. 
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FIG. 1. Plot of l(rlV/ dP)H as function of M2 for various values 
ofa. Branch 1: O<a < 1;Branch2: a < O;Branch3: l <a; 
Branch 3b: M 2a > 1. 

III. STABILITY WITH RESPECT TO 
TWO·DIMENSIONAL PERTURBATIONS 

In this section we summarize the results of studies by 
D'yakov and by Erpenbeck of the structural stability of 
shocks with respect to two-dimensional perturba­
tions. 2,3,5 These results are of special interest in the 
present context because the limits derived also corre­
spond to the absolute instability limits for breakup of a 
plane shock into two waves, derived by Bethe. 1 This 
correspondence was first pointed out by Gardner. 4 

The results of these studies show that shock waves 
are unstable outside the limits given by 

-1 :;; l(dV/dP)H :;; 1 +2M . (17) 

When either of these inequalities is exceeded, small 
sinusoidal perturbations of the front grow in amplitude 
with time. 

p 

H 

u 

FIG. 2. Unstable Hugoniot curve, j2 (dV/ dP)H < -1. Hugoniot, 
H, and characteristic curve, S" lie above Rayleigh line, i, at 
A . Subsonic condition, M < l, violated atA. 
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FIG. 3. Alternative wave solutions consiste nt with Hugoniot of 
Fig. 2. 

It is remarkable that the limits of Ineq. (17) are also 
those for which a shock can split into two waves. That 
is, outside either limit a prescribed pressure, particle­
velocity boundary condition can be satisfied by either a 
single shock or by a two-wave configuration. First, 
consider a case in which the lower limit is violated. 
Then, it is clear from Fig. 1 that, provided M 2a < 1, the 
only solutions consistent with the jump conditions cor­
respond to M2> 1. However, this implies that the shock 
travels faster than the speed of sound in the compressed 
medium behind the shock, and it has been shown that the 
Second Law would then be violated in the shock transi­
tion. 9 It will be shown later that the branch M 2a> 1 is 
also unstable. 

Another point of view that can be taken is illustrated 
in Fig. 2, which shows a Hugoniot curve in the P-u 
plane for which the lower limit of Ineq. (17) is violated 
at point A. The isentropic curve through point A inter­
sects the Hugoniot curve again at point A'. We note that 
both the Hugoniot curve and the isentropic curve must 
lie on the same side of the Rayleigh line and are simul­
taneously tangent to that line at the lower stability limit 
of Ineq. (17). This is shown by Eq. (10), which can be 
inverted to give 

l(~;t = 1- 2j(~~t ' 
so that 

-1 <l(dV) 
dP H 

implies 

j(~~t < 1. 

Moreover, as noted previously, when M 2a < 1, this 
same restriction implies M < l, and from Eq. (13), 

j(~~)s < 1. 

This result has also been discussed by Landau and Lif­
shitz (Ref. 10, p. 326). 

The configuration shown in Fig. 2 admits two solu­
tions for prescribed boundary conditions corresponding 
to state A'. These are (a) a single shock to A', and (b) 
a shock to state A followed by a slower rarefaction 
wave to A', as illustrated in Fig. 3. In order for (b) to 
be a stable configuration (and a single shock to A to be 
unstable) the speed of the rarefaction wave must be less 
than the speed of the shock, i. e., the shock must be 
supersonic with respect to the medium behind, or M > 1. 
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u 

FIG. 4. Unstable Hugoniot curve, i2(rlV/dP)H> 1 + 2M. Charac­
teristic curve, S-, intersects Hugoniot, H, twice, at A and A ' . 

An analogous argument applies when the upper limit 
of Ineq. (17) is violated. In this case, using Eq. (10), 

.2(dV) =1-2 ./dU) > 1 2M 
J dP H J\dP H + , 

or, since j > 0, 

(~~t <-7· 
Employing Eq. (13) this implies, for the negative solu­
tion of Eq. (13), 

(dP) « dP) < 0. 
du s dUH 

A configuration satisfying this inequality is shown in 
Fig. 4; the isentrope through state A crosses the Hugo­
niot curve again at state A'. A prescribed P-u state at 
the boundary corresponding to state A' can then be sat­
isfied by two different wave configurations: (a) a single 
shock to state A', or (b) a shock to state A and a rare­
faction to state A' traveling in the opposite direction to 
the shock. These solutions are illustrated in Fig. 5. 

It is thus clear that the limits of Ineq. (17) corre­
spond to the limits outside which a shock can sponta­
neously split into two waves. These limits are illus­
trated in the P- V plane in Fig. 6. 

It has been noted previously that the region for which 

j(du/dP)H < 0 

is peculiar in that it admits multi-valued solutions to an 
impact problem. 5 Figure 7 shows an impedance-match 
solution in the P-u plane for a projectile with normal 

p 

(0) (b) x 

FIG. 5. Alternative wave solutions consistent with Hugoniot of 
Fig. 4. 
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P 

PoL-----------~------------~--------
VI Vo V 

FIG. 6. Stable and unstable regions of P-V plane. Hugoniot 
curves with slopes in region 3 are unstable according to Eq. 
(17). In region 2, j(tiU/rlP)H<O. 

Hugoniot curve impacting a target whose Hugoniotcurve 
does not violate Ineq. (17), but which contains a region 
in which j(du/dP)H < O. The two solutions for the com­
mon P-u state at the interface are indicated by A and B. 
This indeterminancy of the solution to an impact prob­
lem suggests that the criteria of Ineq. (17) are insuffi­
cient to guarantee stability. This possibility is exam­
ined further in the following sections. 

IV. REFLECTION OF ACOUSTIC WAVES AT 
SHOCK FRONTS 

Since a shock travels with subsonic velocity with re­
spect to the compressed medium behind the shock, 
small amplitude, or acoustic waves in the compressed 
medium will overtake and reflect from the front. Fig­
ure 8(a) shows a diagram of such a reflection in the 
time-distance plane, and Fig. 8(b) is the corresponding 
diagram in the pressure-particle velocity plane. The 
Hugoniot curve is labeled H and the characteristic 
curves, Eq. (12b), by S + and S - in the P-u plane. State 

Projectile Toroet 

P 

Uo U 

FIG. 7. Impedance match solution for impact of a prOjectile 
with a target whose Hugoniot contains a region for which (tiP/ 
rlulH < O. States A and B satisfy interface conditions. 
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x 
(a) 

p 

S+ 

u 
( b) 

FIG. 8. Reflection of an acoustic wave at a shock front. (al 
Time-distance plane. Reflection from shock front at A. (hl 
Corresponding pressure-particle velocity plane. Numbered 
states correspond to those at part (al. H is Hugoniot curve, 
S· and S· are characteristic curves. 

1 is the initial shocked state; the state behind the inci­
dent acoustic wave, assumed to be a compressional 
wave, is state 2; and the state behind the reflected 
acoustic wave is state 3. 

The amplitudes of the acoustic waves are assumed to 
be small; consequently, we retain only first-order 
terms, and, 

P3-P1=(dP/ du)H(U3-Ul)+'" , 

P2 - P1 = (j/M)(U2 - u 1) + ••• , 

P3 -P2 = (- j/M)(u3 - U2) + ••• , 

where Eq. (13) has been employed. Eliminating the ve­
locities among these equations yields, 

u3 -u1 - (Ug -U2) - (U2 -Ul) 

(
dU) M M = dP /Pg-Pl)+j(P3-P2)-j(P2-Pl)=0. 

Or, in obvious notation, 

&_ M - j(du/dP)H 
P21 - M +j(du/ dP)H ' 

(18) 

is the ratio of amplitudes of the reflected and incident 
acoustic waves. 

As noted the subsonic condition requires 

O< M < l; j(du/dP)H < l, 

and this condition clearly must be satisfied in order that 
a reflection occur at all. Let us first, therefore, con­
sider a portion of the range within the limits of Ineq. 
(17), namely, 

-1 <f l(dV/ dP)H <f 1, (19) 
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or, from Eq. (10), 

o <f j(du/dP)H <f 1 . 

From Eqs. (18) and (20) we deduce, 

O<f j(dU) =M(1-P32/ P21 ) <f 1 
dP H 1 +P32/P21 

This gives 

M -1 P'2 - 1 <f --<f -""- <f 1 
M +1 P21 ' 

(20) 

(21) 

as the only solution. Within the restrictions specified 
by Ineq. (19) or (20), therefore, the absolute magnitude 
of the amplitude of the reflected acoustic wave is not 
greater than that of the incident wave. 

The remainder of the region limited by Ineq. (17) is, 

1 <l(dV /dP)H < 1 + 2M • 

Using Eq. (10) this can be written 

-M <j(du/dP)H < O, 

whence, we deduce from Eq. (18), 

1 < P 32/ P21 • 

(22) 

We conclude that amplification of acoustic wave am­
plitudes occurs in the region specified by Ineq. (22). 
This is just the region for which multi-valued solutions 
to the impact problem are admitted by Ineq. (17), and 
this suggests that shocks in this region are at least con­
ditionally unstable. 

It has been shown earlier that an oscillatory type of 
instability can occur under these circumstances. 6 

Thus, for example, consider the special case illus­
trated in Figs. 9 and 10. A shock to state 1 is per­
turbed by applying a pressure increment at the bound­
ary, x = 0, at time tl> and the pressure at the boundary 
is then held at its new value P 2 , indefinitely. This per­
turbation is transmitted into the shocked region along a 
C+ characteristic and undergoes successive reflections 

I 

SHOCK 
FRONT 

Pz PI X 

FIG. 9. Time-distance plane showing shock wave and acoustic 
interactions. Boundary x = 0 is perturbed at time tt by impos­
ing constant pressure increment, P 2 - Pt. Forward and back­
ward facing acoustic waves are labeled C' and Co. Motion of 
boundary, x = 0, and variations in shock velocity neglected. 
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ca) u 

(bl 

FIG. 10. (a) Pressure, particle velocity plane corresponding 
to Fig. 9. Numbered states represent P-u states of Fig. 9. 
Hugoniot, H, has negative slope. Characteristics (isentropes) 
are labeled S· and S-. (h) Same as Fig. 10(a) except Hugoniot 
has positive slope. 

at the shock front and at the boundary, producing the 
states labeled 3,4--- . Figure 10 is the associated 
pressure, particle velocity plane with the numbered 
states corresponding to those of Fig. 9. The Hugoniot 
of the material is labeled H and the r characteristics, 
or isentropes, by S· and S-. 

The Hugoniot in Fig. 10(a) is assumed to have nega-

p 

u 
FIG. 11. Similar interaction as shown in Figs. 9 and 10 ex­
cept perturbation at boundary is in particle velocity. U2 - Ut 

=const. 
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p 

R 

\0"00' 

Tarl,let 

I 
I 
I 

\continuitie~7 

I I 

I : 

x 

U 

FIG. 12. (a) Similar diagram to that of Fig. 9 except boundary 
condition is determined by properties of impactor material to 
left of boundary. (b) Pressure, particle velocity plane corre­
sponding to Fig. 12(a). 

tive slope and, as a result, the successive reflections 
form a kind of divergent spiral about the original state, 
1. Conversely, it can easily be seen that when the 
Hugoniot has a positive slope, the spiral is convergent 
and the state asymptotically approaches a new Hugoniot 
state atP2 as in Fig. 10(b). 

Another special case is one in which the perturbation 
is assumed to be an increment in particle velocity, U2 

- Ul' as shown in Fig. 11. When the slope of the Hugo­
niot is negative, the successive acoustic reflections 
again grow in amplitude with time as illustrated. 

The diagrams of Figs. 9-11 have been Simplified in 
an important respect. Each time an acoustic interac­
tion occurs at the shock front a contact discontinuity is 
produced, as indicated by the dashed lines in Fig. 9. 
These present contrasts in acoustic impedance to the 
acoustic waves with the result that additional internal 
reflections occur, complicating the process. We know 
no simple method for treating these internal reflections 
analytically, but note that they have the ultimate effect 
of increaSing the entropy of the shocked region. 

Both of the cases illustrated in Figs. 10 and 11 have a 
common feature: no acoustic energy is transmitted 
across the boundary at x = O. If we consider a more· 
general case in which the shock is produced by impact 
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with a normal material, we may have the situation de­
picted by Fig. 12. The pertinent isentrope of the im­
pactor (x < 0) is labeled R and we see that, neglecting 
contact discontinuities, the instability does not develop 
in spite of the negative slope of the Hugoniot. In this 
case the slope of R is such that it intersects the is en­
trope 3 - 3' at an intermediate point; the acoustic wave 
is sufficiently weakened by transmission of energy 
across the boundary, x = 0, that there is a net diminu­
tion of the acoustic pulse with time. 

Because of the internal reflections at contact discon­
tinuities, it is not obvious that any of these cases is ei­
ther stable or unstable. We note, however, that these 
discontinuities appear with increasing frequency in the 
vicinity of the shock front as the interaction progresses. 
This "turbulence" may tend to isolate the region imme­
diately behind the front and reduce the influence of the 
rear boundary conditions. In that event all of the cases 
considered would be expected to be unstable. In any 
case, it seems clear that Ineq. (19) must be satisfied in 
order for a shock to be unconditionally stable. 

V. THERMODYNAMIC STABILITY 

To treat the shock stability problem by means of 
thermodynamics it is helpful to first consider a simpler 
problem in which two subsystems, each in internal 
equilibrium but not in mutual equilibrium, are allowed 
to interact. The initial thermodynamic states are the 
same as for the shock problem, but particle velocities, 
as well as heat conduction, are assumed negligible. 
There are then no mass or momentum fluxes to stabi­
lize the configuration and we inquire into the conditions 
obtaining as the system approaches mutual equilibrium. 
Figure 13 illustrates this situation. 

There are two ways to think about the static problem. 
In Fig. 14 we show a conceptual Rube-Goldberg device 
that permits the system to come to equilibrium while 
maintaining each subsystem in internal equilibrium. 
The insulated piston is attached to a paddle wheel en­
tropy-generator of zero-heat capacity that delivers heat 
to either subsystem in varying amounts. The heat flow 
is controlled by a valve that can be switched arbitrarily 
but, to maintain thermal isolation of the two subsys­
tems, must be considered to be always fully switched in 
one position or the other. Energy and volume of the en­
tire system are constant and each subsystem contains 
unit mass. 

As independent variables we choose the speCific vol­
ume V and a reduced internal energy E', defined by 

Shock Front 

b 
p.V.u I po.Vo. Uo 

Shock Configuration 

Moveoble 
Adiobatic Wall 

p. V po. Vo 

Static Configuration 

FIG. 13. Shock and static configurations with same thermo­
dynamic s tates. 
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FIG. 14. Equilibration machine. Static configuration of Fig. 
13 approaches equilibrium while each subsystem remains in 
internal equilibrium. 

dE'=dE+PodV. (23) 

The differential of this quantity is therefore given by the 
change in internal energy less the work done on one 
subsystem by the other subsystem. We refer to it as 
the reduced internal energy. In mutual equilibrium, 
P=Po, dE=-PodV, anddE'=O. 

When the system is permitted to relax toward equi­
librium, we have 

dV +dVo =0, dE +dEo= 0 , 

and 

dE' =dE+PodV, dE~=dEo+PdVo. 

Invoking the requirement that each subsystem be in in­
ternal equilibrium implies 

dE=TdS-PdV 

and 

dEo = T odSo - PodVo . 

Hence, 

dE' = TdS - (P - Po)dV 

and 

dEG = T odSo - (p - Po)dV • 

Finally, energy conservation requires 

dE+dEo=O, 

or 

TdS+TodSo- (P-Po)dV=O, 

so that 

dE' = - TodSo , 

and 

dEG=- TdS • 

Moreover, 

TdS = (P - Po)dV - TodSo , 

and 

TodSo = (P - Po)dV - TdS . 

(24) 

(25) 

We now note that both conditions TdS ;;' 0 and TodSo 2:. 0, 
must apply. Consequently, the approach to equilibrium 
is characterized by, from Eq. (24), 
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dS?! 0 and dE':5 o. 
Equivalently, we can write, from Eq. (25), 

0 "'" TdS "'" (p - Po)dV • 

(26) 

(27) 

Both inequalities in Eqs. (26) or (27) must hold if en­
tropy is to increase in each subsystem. The usual 
thermodynamic stability criterion for systems in equi­
librium states that the availability, defined by 

A=E-ToS+PoV, 

where To and Po are the temperature and pressure of 
the surroundings, considered to be reservoirs, is min­
imum in equilibrium. 11 In the present context this im­
plies 

ciA =dE +PodV - TodS 

=dE' - TodS = - To(dSo+ dS) "'" 0 . 

This statement, however, is insufficient in that it does 
not specify that, in general, entropy must be produced 
in the surroundings as well as in the subsystem under 
consideration. For nonconducting systems we therefore 
take Ineq. (26) or (27), as the more complete statement 
of the Second Law. 

Another way to derive this result that is somewhat 
simpler is to allow the viscous entropy production to 
occur internally within each subsystem. We denote by 
:E the mechanical stress acting at the interface between 
the two subsystems and assume that each medium is 
sufficiently viscous so that stress equilibrium is main­
tained and the kinetic energy is negligible as the sys­
tems approach thermodynamic equilibrium. The equi­
librium pressure P is no longer the mechanical stress 
and is defined only by the equilibrium equation of state, 
i. e., P=P(V, E). 

We now have 

dE=- :EdV , 

and 

to be combined with the equilibrium relations 

dE=TdS-PdV, dEo=TodSo-PodVo. 

This gives 

TdS=-(:E-P)dV, TodSo=(:E-Po)dV. 

We now require that entropy be produced in each sub­
system, so that 

- (:E - P)dV ;;' 0, (:E - Po)dV ;;' 0 . 

Hence, if dV > 0, we must have 

This relation implies that during the approach to equi­
librium 

0 "'" TdS "'" (p -Po)dV , 

and 

dE' = - (:E - Po)dV "'" 0 

as before. 
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We now apply this result, Ineqs. (26) or (27), to the 
shock stability problem. Differentiating the expression 
for the Hugoniot surface, Eq. (3), gives 

or 

dE=~(Vo- V)da-~(a+Po)dV , 

dE' =dE +PodV =i[(Vo - V)da - (a - Po)dV] 

=~(vo- V)(da-ldV) • (28) 

From Eq. (8) we note that this is also equal to the dif­
ferential of the kinetic energy density, ~(u -uo)2. We 
can also express this equation in terms of V and S as 
independent variables by means of the transformation 

dE' = TdS - (P - Po)dV . 

In invoking this equation we do not imply that the Hugo­
niot surface is a thermodynamic equilibrium surface. 
Equation (28) then becomes, 

TdS= ~(vo-V{da-(l-2~=~O))dVJ . (29) 

The Hugoniot P-V curve is defined by the intersection 
of the Hugoniot surface with the equilibrium surface. 
Hence, along this curve, u=P and Eqs. (28) and (29) 
reduce to 

and 

TdS= ~(Vo- V)[(dP/dV)H+j2]dV • 

We now posit the following: 

POSTULATE: A shock transition from an initial 

(30) 

(31) 

state to a given final state is thermodynamically un­
stable if there exists a neighboring final state on the 
Hugoniot curve for which the entropy is larger and the 
reduced internal energy smaller than for the given state. 

According to this postulate, shocks are thermody­
namically unstable when thermodynamically permissible 
adiabatic fluctuations, i. e., satisfying Ineq. (27), about 
a shocked state can occur that result in a new state also 
compatible with the jump conditions. By "thermody­
namically unstable" we mean that the system is unsta­
ble given fluctuations of sufficient magnitude, in accord 
with the usual thermodynamic point of view. 

From Ineq. (26) or (27) we can derive necessary con­
ditions for stability. Since P> Po, we consider only 
dV > 0 and Eqs. (30) and (31) are incompatible with 
Ineq. (26) when 

(-~~ t ;;, 0, ~ (~~ t ;;, l , (32a) 

or 

T/dS ) ""' 0 ~(dP) ""' _J.2 
\dV H ' dV H • 

(32b) 

These can be combined in the statement 

which is exactly the result obtained for stability with 
respect to acoustic amplification, Ineq. (19). 
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FIG. 15. Paths in P-V plane for r >o. Adiabatic expansion 
from VI takes place on path between SI and E;. Hugoniot curve 
H, excluded from this region. 

We can illustrate this restriction by means of a P- V 
diagram as shown in Fig. 15, for the case r > O. On 
the equilibrium surface we have 

(:~t =(:~)s +(::)v(:~t 
=(BP) +!:.(P-Po) . 

BV s V 

Hence, for r > 0 and P > Po the curve of constant E' lies 
above the isentrope S as shown, and adiabatic fluctua­
tions consistent with Ineq. (27) lie between these curves. 
When r < 0, the relative positions are reversed. For 
stable shocks the Hugoniot curve is excluded from the 
region bounded by these curves. 

We can also consider the stability problem from the 
point of view of the restoring forces invoked during a 
virtual displacement. Returning to Eqs. (28) and (29) 
and retaining only first order terms in an expansion 
about a Hugoniot state, specified by P = PI' V = VI' gives 

[( 
2 )dE' .2J a=PI + --- --+) dV+··· , 

Vo- VI dV 
(33a) 

=PI + [(---2---)TI dS - /ldv + ••• 
Vo - VI dV J (33b) 

The paths along which the derivatives are taken is so 
far arbitrary. [In Eqs. (30) and (31) we also specified 
dal dV=dPl dV. ] 

Expressions analogous to Eq. (33) can be written for 
the equilibrium surface; thus, 

[(BP) dE' (BP) J P=PI + -, -+ - dV+··· 
BE v dV BV E' 

[ r dE' (BP) J =P1 + ~---+ - dV+··· 
VI dV BV E' 

(34a) 

=PI +[~ (dS)+(BP) JdV + ... 
VI dV BV s 

(34b) 

The difference between Eq. (33) and Eq. (34) is 

[( 2) dE'.2 (BP) J 
a-P= VO-VI (1- al) dV+} - BV E' dV, (35a) 

or 

a - P =[ (V
o 
~ vJ(1 - al)TI ~~-l- (:~)JdV, (35b) 

where the definition of "a, "Eq. (15), has been used. 
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We now consider fluctuations in volume OV consistent 
with the thermodynamic restriction, Ineq. (26) and re­
quire for stability that the restoring force be opposed to 
the displacement, i. e. , 

(a-P)oV ~ O , (36) 

for stability. Along the two bounding curves, dE' = 0 
and dS = 0, this implies 

[j2 _ (BPIBV)E1 ](OV)2 ~ 0, 

and 

Thus, 

(BP/BV)E' ~ l , 

and 

These restrictions are shown in Fig. 16. 

For intermediate paths between these bounds, 
(36) stipulates, from Eq. (35), 

(Vo ~ VI )(1 -al)TI~~- / - (:~)s 

=(VO~vJ(1-al)~~+j2_(:~t ~ O. 

(37a) 

(37b) 

Ineq. 

(38) 

The former of these is clearly satisfied, provided 
Ineqs. (37) are valid, for a < 1 and dsl dV ~ 0; the latter 
when a> 1 and dE' IdV ~ O. Thus, stability with respect 
to all admissible fluctuations consistent with Ineq. (26) 
is guaranteed by Ineqs. (37). 

The restrictions on the slope of the Hugoniot P-V 
curve implied by Ineqs. (37) can be derived from Eq. 
(13). We note that Ineq. (37b) is just the subsonic con­
dition, 

M2 = -l(dV I dP) s ~ 1 , 

and this restriction implies, for M 2a < 1, 

-1 ~l(dVldP)H , 

as shown in Fig. 1. 

p 

~.L-________ ~ ________ ~ ________ __ 
Vo V 

FIG. 16. Relative positions of Rayleigh line, - j 2, reflected 
Rayleigh line , .i 2, isentrope, S, and isoe ner getic line , E', 

for stable shocks. 
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.2(aV) 
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FIG. 17. Plot of f (dV/dP)H as function ofj2 (8V/8P)E' when 
a > 1. Stable case corresponds to i (8V/8P)E' > I, and l 
x (dV/dP)H< 1. 

With the substitutions 

f8P) =(BP) + r(p - po) 
\-8V E' 8V. V 

( 8P) 2 ·2 = - + aJ 
BV • 

(a= p), 

Eq. (16) can be written 

.ddV) l(BV/8P)E.(a -1) 
J \dP H aj2(8V/8P)E.-1 

(39) 

A plot of this function for the case a> 1 which, exclud­
ing the region M 2a > 1, is the only remaining case of in­
terest, is shown as Fig. 17. From this figure it is 
clear that the restriction, Ineq. (37a), also implies the 
inequality 

j2(dV/ dP)H -'f' 1 • 

We therefore conclude that the stability condition, 
Ineq. (36), when combined with the thermodynamic re­
striction, Ineq. (27), implies the criterion for shock 
stability 

-l -'f' l(dV/dP)H -'f' 1 

in agreement with earlier arguments. 

To complete the theory we must include the other 
well-known condition for stability, namely, that the 
shock travel with supersonic velocity with respect to 
the undisturbed medium ahead of the shock. This has 
been shown elsewhere. 9 Moreover, we still have to 
consider the branch 3b of Fig. 1, for which M 2a> 1. 

From Eq. (14), with P=Po, V=Vo, it is clear that 
the Hugoniot and isentrope have the same slope at the 
initial state. Hence, the supersonic condition 

M~= - j2(BV/BP). > 1 

also implies 

j2(dV/dP)H < -1 

in the initial state. 

(40) 

Now consider Hugoniot curves of two different types 
that are assumed to lie on branch 3b of Fig. 1 as illus­
trated in Fig. 18. A Hugoniot curve of type I, that ap­
proaches the shocked state 1 from below the Rayleigh 
line can be ruled out on the basis that one or the other 
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TABLE I. Limits of various derivatives 
for stable shocks. 

-1$ j2 (dV/rlP)H $ 1 
(8P/8V)s$ _j 2 
(8P/8 V)E' $ j2 
o $T (dS/ dP)H $(Vo - V) 
0$ (dE' /dP)H$ (VO - V) 
0$ (dU/dP)H SU/ (P -Po) 
0$ (du/ dP)HSU/(P - Po) 
(dS/dE')H~O 

of the limits of Ineq. (19) would be exceeded before the 
slope of the Hugoniot could take on values pertaining to 
the region in question, i. e., l(dV/dP)H < -1. Alter­
natively, a Hugoniot of type II necessarily crosses the 
Rayleigh line at a lower pressure as at point 2. This 
state, however, is a thermodynamic equilibrium state 
and could therefore be considered an initial state for 
the shock transition from 2 to 1. However, according 
to Ineq. (40), the supersonic condition would be violated. 
We conclude, therefore, that the branch 3b of Fig. 1, 
for which M2a > 1, is unattainable. 

The symmetry of Ineq. (19) is reflected in other 
equivalent relations derived by substituting from the 
jump conditions, Eqs. (1)-(3). These are shown in Ta­
ble I. We note that one consequence is that the shock 
velocity is a monotonic function of the particle velocity. 

Let us now consider further the consequences of vio­
lation of each of the limits of Ineq. (19). Figure 19 
shows a case in which the lower limit is violated be­
tween points A and C. From Eq. (31) it is seen that the 
entropy along the Hugoniot curve is a maximum at A 
and a minimum at B with respect to neighboring Hugo­
niot states. If we plot entropy as a function of pressure 
along the Hugoniot, we get a curve like that in Fig. 20. 

From our criteria we deduce that shock waves whose 
final states fall within A-C are unstable. If the final 
pressure falls within this range, a two-wave configura­
tion is produced in which the first wave carries the ma­
terial to state A, and a subsequent shock with initial 
state A carries the material to higher pressure, less 
than C; if the final pressure exceeds C, a single shock 
is again stable. Instabilities of this type and the two­
shock configuration have been widely observed. 12 It is 
important to notice that under these conditions the pres-

p 

FIG. 18. Unstable Hugoniot curves for whichj2 (1V/tiP)H < -1 
at point 1. 
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FIG. 19. Hugoniot curve with region of instability between A 
and C: (a) P-V plane, (b) P-u plane. Point A is entropy 
maximum along H; B is entropy minimum. 

sure of the first wave is stationary at state A with re­
spect to higher shock pressures, (less than C). 

Now, consider a situation where the upper limit of 
Ineq. (19) is exceeded, as illustrated in Fig. 21. In 
this case a plot of E' as function of P has the appear­
ance shown in Fig. 22. The region between A and B is 
thermodynamically unstable according to Ineq. (19). 
Consequently, a shock to state B tends to be stabilized 
in pressure with respect to lower shock pressures. 
This is just the situation required for detonation, and 
we put forward the hypothesis that detonation is indeed 
the result of a minimum in E' along the Hugoniot curve. 

We note that this criterion for detonation is quite dif­
ferent from the Chapman-Jouguet Theory. In that the­
ory detonation corresponds to a local minimum in the 
entropy along the equilibrium Hugoniot curve. More­
over, it requires the assumption of two effective equa­
tions of state, applicable in different regions of the 
shock transition, a frozen equation of state for the ini­
tial shock transition and a relaxed equation of state for 
the equilibrium state finally achieved (Ref. 10, p. 480). 

s 

P 
FIG. 20. Entropy as function of pressure along Hugoniot curve 
of Fig. 19. Cross-hatched region is region of instability. 
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Vo V 

p 

D 

u 

FIG. 21. Hugoniot curve with unstable region 1 < j 2 (1.V / tiP) H, 

between A and B: (a) P-V plane, (b) P-u plane. Point A is 
relative maximum in E' along H; B is relative minimum. 

In summary then, stable shocks are characterized by 
monotonically increasing entropy and reduced internal 
energy along the Hugoniot curve, and unstable shocks 
are associated with either a local maximum in the de­
rivative (dS/dP)H' or with a local minimum in the de­
rivative (dE' /dP)H' In the former case, a two-shock 
configuration results in which the pressure of the first 
wave is stationary at the entropy maximum. The latter 
case corresponds to detonation with the pressure sta­
tionary at the minimum in E'. 

The unstable regions are shown as the cross-hatched 
areas of Figs. 20 and 22. The upper bound of the un­
stable region of Fig. 20 is determined by the equiva­
lence of the shock velocity there with that at the en­
tropy maximum. The region CA of Fig. 22 is metasta­
ble; shock waves in this range require adequate pertur-

E' 

D 

8 

P 

FIG. 22. Plot of E' as function of P along Hugo niot c urve of 
Fig. 21. Cross-hatched region is thermodynamically unstable. 
Point B is detonation state. 
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bation to overcome the energy barrier. Just as a liquid 
can be cooled below the stable transition temperature, 
the existence of a minimum in E' does not guarantee 
that a detonation will form; however, state B is the 
thermodynamically more stable state. It may be for 
this reason that detonations are observed to propagate 
more readily in materials that are initially somewhat 
porous and why turbulence is commonly observed behind 
detonations. There is an obvious analogy to the onset 
of turbulence in viscous, steady, subsonic flow. 

VI. CONCLUSIONS 

We have treated the problem of stability of plane 
shock waves by considering the reflection of small am­
plitude acoustic waves from the shock front, and by ir­
reversible thermodynamics. Both approaches yield the 
same criteria for stability, which can be stated as a re­
striction on the relative slopes of the Hugoniot curve 
and the Rayleigh line 

-1 ~ l(dV/dP)H ~ 1 . 

Violation of the lower limit leads to a two-shock struc­
ture; violation of the upper limit to detonation. 

The thermodynamic treatment requires the recogni­
tion that, at least in an adiabatic mechanical process, 
the entropy production is bounded above as well as be­
low. This can be stated alternatively by the relations, 
applicable to real processes, 

o ~ TdS ~ (p - po) dV, (T > 0) 

or by the equivalent relations, 

o ~ dS; dE' ~ 0 , 

where dE' =dE +PodV, is the reduced internal energy. 

For shock waves E' is also equal to the kinetic ener­
gy density of the shocked state in a coordinate system 
in which the initial state is stationary; conversely it is 
the kinetic energy density of the initial state in a coord­
inate system in which the shocked state is stationary. 

Shocks are thermodynamically unstable whenever 
there is a local maximum in the entropy or a local min­
imum in the reduced internal energy along the Hugoniot 
curve. These correspond to a local maximum in the 
shock velocity and to a local minimum in the particle 
velocity, respectively. In the former case a two-shock 
structure develops in which the pressure of the first 
shock corresponds to the entropy maximum. The latter 
case gives rise to turbulence that tends to stabilize the 
shock pressure at the minimum in the reduced internal 
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energy. We posit that detonations are instabilities of 
this type. 

Because E' is also the kinetic energy density, there 
is another sense in which the stability criteria can be 
understood. Thus, in a coordinate system fixed in the 
shocked material the shock front tends to produce max­
imum entropy with minimum expenditure of the kinetic 
energy of the incoming material. Instability occurs 
when there are neighboring Hugoniot states that permit 
greater production at less cost. It is tempting to specu­
late that simUar thermodynamic conditions may also be 
valid for biological systems. 

We note that the results are in satisfying agreement 
with a generalized form of the Le Chatelier principle. 
Thus, for stable shocks both the shock velOCity and the 
particle velocity increase monotonically with pressure. 
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The stability of plane shock waves is treated by examining the amplitudes of acoustic waves reflected from 
shock fronts, and by methods of irreversible thermodynamics. Both approaches yield the same conditions 
for stability, -I =::,j 2(d V / dP)H =::, I, where j 2 is the negative slope of the Rayleigh line, and the derivative is 
taken along the Hugoniot p. V curve. The thermodynamic method indicates that instabilities are associated 
either with local maxima in the entropy, or shock velocity; or with local minima in the reduced internal 
energy, or particle velocity, along the Hugoniot curve. It is proposed that the latter case corresponds to 
detonation with the detonation state given by the particle velocity minimum. 

I. INTRODUCTION 

Earlier studies of the stability of shock waves have 
established the existence of two limits outside which a 
shock splits spontaneously into two waves traveling in 
the same or in opposite directions. Bethe first derived 
sufficient conditions for plane shocks to be stable against 
such breakup. 1 Later studies by D'yakov,2 and by Er­
penbeck,3 based on analysis of the stability with respect 
to two-dimensional perturbations also established two 
bounds; these were shown by Gardner to be equivalent 
to Bethe's criteria for plane shocks. 4,5 

In this paper we consider a region within the above 
limits in which a shock is evidently potentially unstable 
for other reasons. We show that in this region small 
amplitude acoustic waves incident on the shock front 
from the compressed region behind the front undergo 
amplification upon reflection at the front. This can lead 
to an oscillatory type of instability proposed earlier, 6 

although it is not clear from this treatment that insta­
bility necessarily occurs when the amplification criteri­
on is satisfied. 

We have also approached the stability problem from 
the point of view of irreversible thermodynamics and 
show, based on a plausible hypotheSiS, that in the re­
gion under consideration a shock is thermodynamically 
unstable; whether or not instability actually occurs de­
pends on the magnitude of perturbations. The acoustic 
wave approach and the thermodynamic approach thus 
exhibit a nice correspondence. 

Technical interest in the shock stability problem de­
rives from applications in which it is desired to relate 
wave propagation behavior to properties of the trans­
mitting medium. In solids, for example, polymorphic 
phase changes and yielding at the elastic limit may lead 
to splitting of a single shock into two shocks traveling in 
the same direction. In reactive media, self-sustaining 
waves or detonation waves, may form under conditions 
that are not well understood. 

The problem is also of exceptional theoretical inter­
est because of the existence of several apparently dis­
tinct methods of approach, as has been pointed out by 
Woods. 7 The theory of irreversible thermodynamics is 
well known to be underdeveloped, and .it may be hoped 
that new insight into the theory will result from applica­
tion of various methods to a relatively simple problem 
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such as that of plane shock waves. 

The thermodynamic method employed here invokes no 
new principles but requires the recognition that the ap­
proach to equilibrium of two systems initially out of 
equilibrium is characterized by nonnegative entropy 
production in each system. This can be expressed, at 
least for adiabatic, viscous flow, by an upper as well 
as a lower bound to the entropy production rate. Still 
another statement is that the reduced internal energy 
(defined later) is minimized and the entropy is maximized 
in equilibrium. These latter statements are not, in 
general, equivalent; one does not imply the other. 

The thermodynamic method predicts a new criterion 
for detonation that is quite different from the Chapman­
Jouguet Theory. We postulate this criterion in Sec. V. 

In Sec. II we display the jump conditions and several 
definitions and transformations that are useful. Section 
III is a summary of the conclusions of the Bethe-D'yakov 
theory. The interaction of acoustic waves with the shock 
front is considered in Sec. IV and the thermodynamic 
approach is presented in Sec. V. 

II. JUMP CONDITIONS 

The well-known Rankine-Hugoniot jump conditions ap­
plicable to plane shocks with steady profile or to discon­
tinuous jumps can be written, 8 

u - Uo = Po(U - uo)(Vo - V) , 

(J - Po = PoW - uo)(u - lto) , 

E -Eo= t ((J+Po)(Vo - V) . 

(1) 

(2) 

(3) 

These equations express conservation of mass, mo­
mentum, and energy, respectively. Mass velocity is 
denoted by u, shock velocity by U, specific volume by 
V = p-l, normal stress in the direction of propagation by 
(J (measured positive in compression), and specific in­
ternal energy by E. Subscripts 0 refer to the undis­
turbed state ahead of the shock, assumed to be a ther­
modynamic equilibrium state. The mechanical condi­
tions, Eqs. (1) and (2) require no assumption about 
thermodynamic equilibrium and apply throughout the 
shock transition region; hence, the use of (J to denote 
stress rather than P which is used to denote the pres­
sure of thermodynamic equilibrium states. Equation 
(3) is valid whenever no other sources of energy besides 
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mechanical energy are assumed. 

Since a shock is an adiabatic process, Eq. (3) applies 
to equilibrium end states; it only applies to the shock 
transition region, however, when heat conduction and 
radiation in that region can be neglected. Equation (3) 
is termed the Hugoniot relation and, for given (po, Yo, 
Eo), defines a surface, 

a=a(V,E;Po, Vo,Eo) (V*Vo) , 

that represents the locus of states achievable by a shock 
transition in any medium. 

For the description of shocks in a specific medium, 
Eqs. (1)-(3) are supplemented by the equilibrium equa­
tion of state of the medium in the form 

P=P(V,E;Eo) • (4) 

The simultaneous solution of Eqs. (3) and (4), with 
a=P, yields a curve P(V) termed the "Hugoniot equa­
tion of state," or sometimes the "R-H curve." 

We define several useful quantities 

j =Po(U -uo) , 

whence, from Eqs. (1) and (2), 

j2 = (a - po)/(Vo - V) • 

Also, 

M= I(U-u)/cl 

and 

C2=(8P) =_V2(8P) • 
8p s 8V s 

(5) 

(6) 

(7) 

(8) 

The quantity j is the mass flux through the shock front 
and is positive when the shock velOCity exceeds the ini­
tial mass velocity uo. Its square l is also equal to the 
negative slope of the Rayleigh line joining the end states. 
The quantity M is the local Mach number of the shock 
with respect· to the medium, and c is the local sound 
speed in spatial coordinates. The subscript s denotes 
the isentropic derivative. 

Several combinations of these relations yield useful 
transformations. Thus, combining Eqs. (1), (2), and (6), 

(u-uo)2=(a-Po)(Vo-v)=l(Vo-V)2. (9) 

This can be differentiated to give 

2(u - uo)du = - (a - Po)dV + (VO - V)da , 

or, using Eq. (9), 

j(~~t =±~[1-j2(~;)J, (10) 

where the subscript H denotes differentiation along the 
Hugoniot curve. 

For definiteness we consider only compressive shocks 
traveling in the positive direction, so that, 

j>O; V < Vo; and u > u o. 

As a result of this assumption we retain only the posi­
tive sign in Eq. (10). 

An alternate expression for Eq. (7) can be derived, 
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using Eqs. (5), (8), and (9), 

M2 _I U - u 12 _ [Voj - (Vo - v)j12 

- C - - V 2(8P/8V)s 

= _j2(!;)s . (11) 

For small amplitude acoustic waves we make use of 
the characteristic equations and associated compatibility 
conditions8 

C±: dx/dt=u±c (12a) 

and 

r'f, or S±: dP/du=±pc. (12b) 

The upper sign of Eq. (12b) holds across forward-facing 
waves, specified by the positive sign of Eq. (12a). Thus, 
r· is valid on the characteristic path C·, and r- holds 
on C-. For acoustic waves the flow is assumed to be 
isentropiC, and we therefore adopt the obvious notation 
for these waves 

(~~t =±(V/c). 

Combining this with Eqs. (6) and (11) gives, 

(
dU) =± (_ 8V)1/2 
dP s 8P s 

=± (M/j) • (13) 

Still another useful relation can be obtained by writ­
ing the slope of the Hugoniot curve as a directional de­
rivative, 

and employing Eq. (3), which differentiated is, with 
a=P, 

(~~)H =-i(p+po)+i(Vo- v>(~~t • 

Thus, 

However, on the equilibrium surface, 

The Gruneisen parameter is 

r = V(8P/8E)y • 

Hence, equating the two expressions for (8P/aV)E' 

IdV) _ 1 - (r /2V)(Vo - V) 
\dP H -(Sp/sV)s+(r/2V)(p-Po)' 

This can be Simplified by the substitution 

a=(r/ 2V)(Vo- V) , 

together with Eq. (11). We get 

j2(dV/ dP)H=M2(a-l)/(1-M2a) • 

A graph of this equation is shown in Fig. 1. 
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I - - - - T 1.0 

FIG. 1. Plot of j2(rl.V/dP)H as function of M2 for various values 
ofa. Branch 1: O<a <1;Branch2: a < O;Branch3: 1 < a; 

Branch 3b: M2a > 1. 

III. STABILITY WITH RESPECT TO 
TWO-DIMENSIONAL PERTURBATIONS 

In this section we summarize the results of studies by 
D'yakov and by Erpenbeck of the structural stability of 
shocks with respect to two-dimensional perturba­
tions. 2,3,5 These results are of special interest in the 
present context because the limits derived also corre­
spond to the absolute instability limits for breakup of a 
plane shock into two waves, derived by Bethe. 1 This 
correspondence was first pointed out by Gardner. 4 

The results of these studies show that shock waves 
are unstable outside the limits given by 

(17) 

When either of these inequalities is exceeded, small 
sinusoidal perturbations of the front grow in amplitude 
with time. 

p 

H 

u 

FIG. 2. Unstable Hugoniot curve, j2 (dV / dP) H < -1. Hugoniot, 
H, and characteristic curve, S" lie above Rayleigh line, i, at 
A. Subsonic condition, M< 1, violated at A. 
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FIG. 3. Alternative wave solutions consistent with Hugoniot of 
Fig. 2. 

It is remarkable that the limits of Ineq. (17) are also 
those for which a shock can split into two waves. That 
is, outside either limit a prescribed pressure, particle­
velocity boundary condition can be satisfied by either a 
single shock or by a two-wave configuration. First, 
consider a case in which the lower limit is violated. 
Then, it is clear from Fig. 1 that, provided M 2a < 1, the 
only solutions consistent with the jump conditions cor­
respond to M2 > 1. However, this implies that the shock 
travels faster than the speed of sound in the compressed 
medium behind the shock, and it has been shown that the 
Second Law would then be violated in the shock transi­
tion. 9 It will be shown later that the branch M 2a > 1 is 
also unstable. 

Another point of view that can be taken is illustrated 
in Fig. 2, which shows a Hugoniot curve in the P-u 
plane for which the lower limit of Ineq. (17) is violated 
at point A. The isentropic curve through point A inter­
sects the Hugoniot curve again at point A'. We note that 
both the Hugoniot curve and the isentropic curve must 
Lie on the same side of the Rayleigh line and are simul­
taneously tangent to that line at the lower stability limit 
of Ineq. (17). This is shown by Eq. (10), which can be 
inverted to give 

.2(dV) = 1 _ 2 .(dU) 
J \dP H J dP H ' 

so that 

-1 <jddV) 
\dP H 

implies 

j(~~t < 1. 

Moreover, as noted previously, when M 2a < 1, this 
same restriction implies M < 1, and from Eq. (13), 

j(d~). < 1. 

This result has also been discussed by Landau and Lif­
shitz (Ref. 10, p. 326). 

The configuration shown in Fig. 2 admits two solu­
tions for prescribed boundary conditions corresponding 
to state A'. These are (a) a single shock to A', and (b) 
a shock to state A followed by a slower rarefaction 
wave to A', as illustrated in Fig. 3. In order for (b) to 
be a stable configuration (and a single shock to A to be 
unstable) the speed of the rarefaction wave must be less 
than the speed of the shock, i. e., the shock must be 
supersonic with respect to the medium behind, or M > 1. 
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P 

u 

FIG. 4. Unstable Hugoniot curve, i2(tlV/dP)H> 1 + 2M. Charac­
teristic curve, S·, intersects Hugoniot, H, twice, at A and A'. 

An analogous argument applies when the upper limit 
of Ineq. (17) is violated. In this case, using Eq. (10) , 

.2(dV) = 1 _ 2 .(dU) > 1 2M 
J dP H J\dP H + , 

or, since j> 0, 

(~~t <-7· 
Employing Eq. (13) this implies, for the negative solu­
tion of Eq. (13), 

(dP) « dP) < 0. 
du s dUH 

A configuration satisfying this inequality is shown in 
Fig. 4; the isentrope through state A crosses the Hugo­
niot curve again at state A'. A prescribed P-u state at 
the boundary corresponding to state A' can then be sat­
isfied by two different wave configurations: (a) a single 
shock to state A', or (b) a shock to state A and a rare­
faction to state A' traveling in the opposite direction to 
the shock. These solutions are illustrated in Fig. 5. 

It is thus clear that the limits of Ineq. (17) corre­
spond to the limits outside which a shock can sponta­
neously split into two waves. These limits are illus­
trated in the P- V plane in Fig. 6. 

It has been noted previously that the region for which 

j(du/dP)H < O 

is peculiar in that it admits multi-valued solutions to an 
impact problem. 5 Figure 7 shows an impedance -match 
solution in the P-u plane for a projectile with normal 

P 

(0) (b) x 

FIG. 5. Alternative wave solutions consistent with Hugoniot of 
Fig. 4 . 
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P 

Po~----------~------------~--------
~ Vo V 

FIG. 6. Stable and unstable regions of P-V plane. Hugoniot 
curves with slopes in region 3 are unstable according to Eq. 
(17). In region 2, j(du/dP)H<O. 

Hugoniot curve impacting a target whose Hugoniot curve 
does not violate Ineq. (17), but which contains a region 
in which j(du/dP)H < O. The two solutions for the com­
mon P-u state at the interface are indicated by A and B. 
This indeterminancy of the solution to an impact prob­
lem suggests that the criteria of Ineq. (17) are insuffi­
cient to guarantee stability. This possibility is exam­
ined further in the following sections. 

IV. REFLECTION OF ACOUSTIC WAVES AT 
SHOCK FRONTS 

Since a shock travels with subsonic velocity with re­
spect to the compressed medium behind the shock, 
small amplitude, or acoustic waves in the compressed 
medium will overtake and reflect from the front. Fig­
ure 8(a) shows a diagram of such a reflection in the 
time-distance plane, and Fig. 8(b) is the corresponding 
diagram in the pressure-particle velocity plane. The 
Hugoniot curve is labeled H and the characteristic 
curves, Eq. (12b), by S + and S - in the P-u plane. State 

Projectile Torget 

P 

Uo U 

FIG. 7. Impedance match solution for impact of a projectile 
with a target whose Hugoniot contains a region for which (dP/ 
tlu) H < O. States A and B satisfy interface conditions. 
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x 
(a) 

p 

u 
( b) 

FIG. 8. Reflection of an acoustic wave at a shock front. (a) 
Time-distance plane. Reflection from shock front at A. (h) 

Corresponding pressure-particle velocity plane. Numbered 
states correspond to those at part (a). H is Hugoniot curve, 
S· and S- are characteristic curves. 

1 is the initial shocked state; the state behind the inci­
dent acoustic wave, assumed to be a compressional 
wave, is state 2; and the state behind the reflected 
acoustic wave is state 3. 

The amplitudes of the acoustic waves are assumed to 
be small; consequently, we retain only first-order 
terms, and, 

Ps-PI =(dP/ du)H(U3-UI)+··· , 

P2 - PI = (j / M)(U2 - u l ) + ••• , 

Ps-P2=(-j/M)(U3- U2)+··· , 

where Eq. (13) has been employed. Eliminating the ve­
locities among these equations yields, 
u3 -u1 - (U3 -U2) - (U2 -u I ) 

=(~;t (Ps -PI )+ ~ (P3 -P2) - ~ (P2 -PI)=O . 

Or, in obvious notation, 

~ M -j(du/dP)H 
P21 M +j(du/ dP)H ' 

(18) 

is the ratio of amplitudes of the reflected and incident 
acoustic waves. 

As noted the subsonic condition requires 

O< M < l; j(du/dP)H < l, 

and this condition clearly must be satisfied in order that 
a reflection occur at all. Let us first, therefore, con­
sider a portion of the range within the limits of Ineq. 
(17), namely, 

-I t£; i(dV/dP)H t£; l, (19) 
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or, from Eq. (10), 

o t£; j(du/dP)H t£; 1 . 

From Eqs. (18) and (20) we deduce, 

Ot£;j (dU) 
dP H 

This gives 

M(l - P32/P21 ) '" 1 
1 +P32/P21 ~ . 

M -1 P'2 -1 t£; --t£;--"'<t£; 1 
M +1 P21 ' 

(20) 

(21) 

as the only solution. Within the restrictions specified 
by Ineq. (19) or (20), therefore, the absolute magnitude 
of the amplitude of the reflected acoustic wave is not 
greater than that of the incident wave. 

The remainder of the region limited by Ineq. (17) is, 

1 <i(dV /dP)H < 1 + 2M • 

Using Eq. (10) this can be written 

-M <j(du/dP)H < 0, 

whence, we deduce from Eq. (18), 

1 < P32/P21 • 

(22) 

We conclude that amplification of acoustic wave am­
plitudes occurs in the region specified by Ineq. (22). 
This is just the region for which multi-valued solutions 
to the impact problem are admitted by Ineq. (17), and 
this suggests that shocks in this region are at least con­
ditionally unstable. 

It has been shown earlier that an oscillatory type of 
instability can occur under these circumstances. 6 

Thus, for example, consider the special case illus­
trated in Figs. 9 and 10. A shock to state 1 is per­
turbed by applying a pressure increment at the bound­
ary, x = 0, at time t l , and the pressure at the boundary 
is then held at its new value P2 , indefinitely. This per­
turbation is transmitted into the shocked region along a 
C· characteristic and undergoes successive reflections 

SHOCK 
FRONT 

x 

FIG. 9. Time-distance plane showing shock wave and acoustic 
interactions . Boundary x = 0 is perturbed at time tl by impos­
ing constant pressure increment, P 2 - Pt . Forward and back­
ward facing acoustic waves are labeled C· and C-. Motion of 
boundary, x =O, and variations in shock velocity neglected. 
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(all 

(bl 
FIG. 10. (a) Pressure, particle velocity plane corresponding 
to Fig. 9. Numbered states represent P-u states of Fig. 9. 
Hugoniot, H, has negative slope. Characteristics (isentropes) 
are labeled S' and So. (b) Same as Fig. lOla) except Hugoniot 
has positive slope. 

at the shock front and at the boundary, producing the 
states labeled 3,4--- . Figure 10 is the associated 
pressure, particle velocity plane with the numbered 
states corresponding to those of Fig. 9. The Hugoniot 
of the material is labeled H and the r characteristics, 
or isentropes, by S+ and So. 

The Hugoniot in Fig. 10(a) is assumed to have nega-

p 

u 

FIG. 11. Similar interaction as shown in Figs. 9 and 10 ex­
cept perturbation at boundary is in particle velocity, u2 - ul 

=const. 
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U 

FIG. 12. (a) Similar diagram to that of Fig. 9 except boundary 
condition is determined by properties of impactor material to 
left of boundary. (b) Pressure, particle velocity plane corre­
sponding to Fig. 12(a). 

tive slope and, as a result, the successive reflections 
form a kind of divergent spiral about the original state, 
1. Conversely, it can easily be seen that when the 
Hugoniot has a positive slope, the spiral is convergent 
and the state asymptotically approaches a new Hugoniot 
state atPa as in Fig. 10(b). 

Another special case is one in which the perturbation 
is assumed to be an increment in particle velocity, U2 

-Ul' as shown in Fig. 11. When the slope of the Hugo­
niot is negative, the successive acoustic reflections 
again grow in amplitude with time as illustrated. 

The diagrams of Figs. 9-11 have been simplified in 
an important respect. Each time an acoustic interac­
tion occurs at the shock front a contact discontinuity is 
produced, as indicated by the dashed lines in Fig. 9. 
These present contrasts in acoustic impedance to the 
acoustic waves with the result that additional internal 
reflections occur, complicating the process. We know 
no simple method for treating these internal reflections 
analytically, but note that they have the ultimate effect 
of increasing the entropy of the shocked region. 

Both of the cases illustrated in Figs. 10 and 11 have a 
common feature: no acoustic energy is transmitted 
across the boundary at x = O. If we consider a more' 
general case in which the shock is produced by impact 
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with a normal material, we may have the situation de­
picted by Fig. 12. The pertinent isentrope of the im­
pactor (x < 0) is labeled R and we see that, neglecting 
contact discontinuities, the instability does not develop 
in spite of the negative slope of the Hugoniot. In this 
case the slope of R is such that it intersects the isen­
trope 3 - 3' at an intermediate point; the acoustic wave 
is sufficiently weakened by transmission of energy 
across the boundary, x = 0, that there is a net diminu­
tion of the acoustic pulse with time. 

Because of the internal reflections at contact discon­
tinuities, it is not obvious that any of these cases is ei­
ther stable or unstable. We note, however, that these 
discontinuities appear with increasing frequency in the 
vicinity of the shock front as the interaction progresses. 
This "turbulence" may tend to isolate the region imme­
diately behind the front and reduce the influence of the 
rear boundary conditions. In that event all of the cases 
considered would be expected to be unstable. In any 
case, it seems clear that Ineq. (19) must be satisfied in 
order for a shock to be unconditionally stable. 

V. THERMODYNAMIC STABILITY 

To treat the shock stability problem by means of 
thermodynamics it is helpful to first consider a simpler 
problem in which two subsystems, each in internal 
equilibrium but not in mutual equilibrium, are allowed 
to interact. The initial thermodynamic states are the 
same as for the shock problem, but particle velocities, 
as well as heat conduction, are assumed negligible. 
There are then no mass or momentum fluxes to stabi­
lize the configuration and we inquire into the conditions 
obtaining as the system approaches mutual equilibrium. 
Figure 13 illustrates this situation. 

There are two ways to think about the static problem. 
In Fig. 14 we show a conceptual Rube-Goldberg device 
that permits the system to come to equilibrium while 
maintaining each subsystem in internal equilibrium. 
The insulated piston is attached to a paddle wheel en­
tropy-generator of zero-heat capacity that delivers heat 
to either subsystem in varying amounts. The heat flow 
is controlled by a valve that can be switched arbitrarily 
but, to maintain thermal isolation of the two subsys­
tems, must be considered to be always fully switched in 
one position or the other. Energy and volume of the en­
tire system are constant and each subsystem contains 
unit mass. 

As independent variables we choose the specific vol­
ume V and a reduced internal energy E', defined by 

Shock Front 

P,V,' I ~O"VO' '0 

Shock Confiourotion 

Moveoble 
Adiobatic Wall 

p. V po. Vo 

Static Confiouration 

FIG. 13. Shock and static configurations with same thermo­
dynamic states. 
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FIG. 14. Equilibration machine. Static configuration of Fig. 
13 approaches equilibrium while each subsystem remains in 
internal equilibrium. 

dE' =dE +PodV • (23) 

The differential of this quantity is therefore given by the 
change in internal energy less the work done on one 
subsystem by the other subsystem. We refer to it as 
the reduced internal energy. In mutual equilibrium, 
P=Po, dE= -PodV, and dE' = O. 

When the system is permitted to relax toward equi­
librium, we have 

dV+dVo=O, dE+dEo=O, 

and 

dE'=dE+PodV, dE~=dEo+PdVo' 

Invoking the requirement that each subsystem be in in­
ternal equilibrium implies 

dE=TdS-PdV 

and 

Hence, 

dE' = TdS - (p - Po)dV 

and 

Finally, energy conservation requires 

dE+dEo=O, 

or 

TdS+TodSo- (P-Po)dV=O , 

so that 

dE' = - TodSo , 

and 

dE~= - TdS • 

Moreover, 

TdS = (p - Po)dV - TodSo , 

and 

(24) 

(25) 

We now note that both conditions TdS ~ O and TodSo~O, 
must apply. Consequently, the approach to equilibrium 
is characterized by, from Eq. (24), 
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dS~O and dE':50. 

Equivalently, we can write, from Eq. (25), 

o ~ TdS ~ (P - Po)dV • 

(26) 

(27) 

Both inequalities in Eqs . (26) or (27) must hold if en­
tropy is to increase in each subsystem. The usual 
thermodynamic stability criterion for systems in equi­
librium states that the availability, defined by 

A=E-ToS+PoV, 

where To and Po are the temperature and pressure of 
the surroundings, considered to be reservoirs, is min­
imum in equilibrium. 11 In the present context this im­
plies 

dA =dE +PodV - TodS 

=dE' - TodS= - To(dSo+ dS) ~ 0 . 

This statement, however, is insufficient in that it does 
not specify that, in general, entropy must be produced 
in the surroundings as well as in the subsystem under 
consideration. For nonconducting systems we therefore 
take Ineq. (26) or (27), as the more complete statement 
of the Second Law. 

Another way to derive this result that is somewhat 
simpler is to allow the viscous entropy production to 
occur internally within each subsystem. We denote by 
~ the mechanical stress acting at the interface between 
the two subsystems and assume that each medium is 
sufficiently viscous so that stress equilibrium is main­
tained and the kinetic energy is negligible as the sys­
tems approach thermodynamic equilibrium. The equi­
librium pressure P is no longer the mechanical stress 
and is defined only by the equilibrium equation of state, 
i.e., P=P(V,E). 

We now have 

dE=-~dV , 

and 

dEo= - ~dVo=~dV , 

to be combined with the equilibrium relations 

dE=TdS-PdV, dEo=TodSo-PodVo. 

This gives 

TdS=-(~-P)dV, TodSo=(~-Po)dV. 

We now require that entropy be produced in each sub­
system, so that 

-(~-P)dV ~ O, (~-Po)dV ~ O. 

Hence, if dV > 0, we must have 

Po ~ ~ ~ P . 

This relation implies that during the approach to equi­
librium 

o ~ TdS ~ (p -Po)dV , 

and 

dE' = - (~-Po)dV ~ 0 

as before. 
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We now apply this result, Ineqs. (26) or (27), to the 
shock stability problem. Differentiating the expression 
for the Hugoniot surface, Eq. (3), gives 

or 

dE=~(Vo- V)da-~(a+Po)dV , 

dE' =dE +PodV =H(Vo - V)da - (a - Po)dV] 

= ~ (Vo- V)(da-j2dV) • (28) 

From Eq. (8) we note that this is also equal to the dif­
ferential of the kinetic energy density, ~(u - UO)2. We 
can also express this equation in terms of V and S as 
independent variables by means of the transformation 

dE' = TdS - (P - Po)dV • 

In invoking this equation we do not imply that the Hugo­
niot surface is a thermodynamic equilibrium surface. 
Equation (28) then becomes, 

TdS= ~ (Vo - V>[da - 02 
- 2~= ~O»)dVJ • (29) 

The Hugoniot P-V curve is defined by the intersection 
of the Hugoniot surface with the equilibrium surface. 
Hence, along this curve, a=P and Eqs. (28) and (29) 
reduce to 

dE' =1- (Vo - V)[(dP/ dV)H -l]dV , 

and 

TdS=~(Vo- V)[(dP/dV)H+j2]dV • 

We now posit the following: 

POSTULATE: A shock transition from an initial 

(30) 

(31) 

state to a given final state is thermodynamically un­
stable if there exists a neighboring final state on the 
Hugoniot curve for which the entropy is larger and the 
reduced internal energy smaller than for the given state. 

According to this postulate, shocks are thermody­
namically unstable when thermodynamically permissible 
adiabatic fluctuations, i. e., satisfying Ineq. (27), about 
a shocked state can occur that result in a new state also 
compatible with the jump conditions . By "thermody­
namically unstable" we mean that the system is unsta­
ble given fluctuations of sufficient magnitude, in accord 
with the usual thermodynamic point of view. 

From Ineq. (26) or (27) we can derive necessary con­
ditions for stability. Since P> Po, we consider only 
dV > 0 and Eqs. (30) and (31) are incompatible with 
Ineq. (26) when 

(-~~t ~ O, ~(:~t ~j2, (32a) 

or 

T(dS) ~ O ~(dP) ~ -J.2 
\dV H ' dV H • 

(32b) 

These can be combined in the statement 

which is exactly the result obtained for stability with 
respect to acoustic amplification, Ineq. (19). 
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r>o 

, 
~L----------------~~--v 

FIG. 15. Paths in P-V plane for r > O. Adiabatic expansion 
from VI takes place on path between SI and E;. Hugoniot curve 
H, excluded from this region. 

We can illustrate this restriction by means of a P- V 
diagram as shown in Fig. 15, for the case r > o. On 
the equilibrium surface we have 

(:~t =(:~)s +(::)J:~t 
=(BP) +!:.(P-Po) • 

BV s V 

Hence, for r > 0 and P > Po the curve of constant E' lies 
above the isentrope S as shown, and adiabatic fluctua­
tions consistent with Ineq. (27) lie between these curves. 
When r < 0, the relative positions are reversed. For 
stable shocks the Hugoniot curve is excluded from the 
region bounded by these curves. 

We can also consider the stability problem from the 
point of view of the restoring forces invoked during a 
virtual displacement. Returning to Eqs. (28) and (29) 
and retaining only first order terms in an expansion 
about a Hugoniot state, specified by P = Plo V = VI' gives 

a=PI + [i_2_)dE' +lJdV + ••• , 
~VO-VI dV 

=PI+[(_2_)Tl
dS 

-lldv+,,, 
Vo- VI dV J 

(33a) 

(33b) 

The paths along which the derivatives are taken is so 
far arbitrary. [In Eqs. (30) and (31) we also specified 
dal dV=dPl dV. ] 

Expressions analogous to Eq. (33) can be written for 
the equilibrium surface; thus, 

[(BP) dE' (BP) J P=PI + -, -+ -- dV+'" 
BE v dV BV E' 

=PI+[.GdE'+(BP) JdV+'" 
VI dV BV E' 

(34a) 

=PI +[~ (dS)+(BP) JdV + ... 
VI dV BV s 

(34b) 

The difference between Eq. (33) and Eq. (34) is 

a - P=[ (V
o

: VI )(1- al)~~ +j2 -(:~tJdV, (35a) 

or 

a - P =[ (V
o

: vJ(l - al)TI ~~ - j2 - (:~)JdV, (35b) 

where the definition of "a , "Eq. (15), has been used. 
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We now consider fluctuations in volume OV consistent 
with the thermodynamic restriction, Ineq. (26) and re­
quire for stability that the restoring force be opposed to 
the displacement, i. e. , 

(a":' p)o V ~ 0 , (36) 

for stability. Along the two bounding curves, dE' = 0 
and dS = 0, this implies 

[j2_(BPIBV)E'](OV)2 ~ 0 , 

and 

Thus, 

(BPIBV)E' ~ l , 

and 

These restrictions are shown in Fig. 16. 

For intermediate paths between these bounds, 
(36) stipulates, from Eq. (35), 

( 2)( ) dS .2 (BP) 
Vo- VI 1- al TldV-J - BV s 

=(vo:vJ(l-al)~~+l-(:~t ;. O . 

(37a) 

(37b) 

Ineq. 

(38) 

The former of these is clearly satisfied, provided 
Ineqs. (37) are valid, for a < 1 and dsl dV ;' 0; the latter 
when a> 1 and dE' I dV ~ O. Thus, stability with respect 
to all admissible fluctuations consistent with Ineq. (26) 
is guaranteed by Ineqs. (37). 

The restrictions on the slope of the Hugoniot P- V 
curve implied by Ineqs. (37) can be derived from Eq. 
(13). We note that Ineq. (37b) is just the subsonic con­
dition, 

M2 = -l(dV I dP) s ~ 1 , 

and this restriction implies, for M 2a < 1, 

-1 ~j2(dVldP)H , 

as shown in Fig. 1. 

p 

~L-________ ~ ________ ~ ________ _ 

Vo V 

FIG. 16. Relative pOSitions of Rayle igh line , _ j 2, r e fl ected 
Rayle igh line , j2 , isentrope, S, a nd isoener getic line, E'. 
for s table shocks. 
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.2(dV) 
J dP H I~ 1 0>1 

1 
I (I, I) 

- 1. - - - - -(0-1)/0 
I 

.2(lJ V) 
J ~P E' 

FIG. 17. Plot of j2 (dV/dP)H as function ofj2 (8V/8P)B' when 
a > 1. Stable case corresponds to i (8V/8P)E' > 1, and l 
x (dV/dP)H< 1. 

With the substitutions 

(
8P) =(8P) + r(p-po) 
8V E' 8V s V 

=(8P) +2aj2 
8V s 

(0"= p), 

Eq. (16) can be written 

.a!dV) l(av/8P)E,(a -1) 
J \dP H aj2(8V/8P)E,-1 

(39) 

A plot of this function for the case a > 1 which, exclud­
ing the region M 2a > 1, is the only remaining case of in­
terest, is shown as Fig. 17. From this figure it is 
clear that the restriction, Ineq. (37a), also implies the 
inequality 

l(dV/dP)H ~ 1 . 

We therefore conclude that the stability condition, 
Ineq. (36), when combined with the thermodynamic re­
striction, Ineq. (27), implies the criterion for shock 
stability 

- 1 ~ j2(dV /dP)H ~ 1 

in agreement with earlier arguments. 

To complete the theory we must include the other 
well-known condition for stability, namely, that the 
shock travel with supersonic velocity with respect to 
the undisturbed medium ahead of the shock. This has 
been shown elsewhere. 9 Moreover, we still have to 
consider the branch 3b of Fig. 1, for which M 2a> 1. 

From Eq. (14), with P = Po, V = Yo, it is clear that 
the Hugoniot and isentrope have the same slope at the 
initial state. Hence, the supersonic condition 

also implies 

j2(dV/ dP)H < -1 

in the initial state. 

(40) 

Now consider Hugoniot curves of two different types 
that are assumed to lie on branch 3b of Fig. 1 as illus­
trated in Fig. 18. A Hugoniot curve of type I, that ap­
proaches the shocked state 1 from below the Rayleigh 
line can be ruled out on the basis that one or the other 
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TABLE 1. Limits of various derivatives 
for stable shocks. 

-1 :5 12 (dV/r1.P)H :5 1 
(8P/ 8V)s:5 _ j2 
(8P/8V)E,:5 j2 
O:5T (dS/ dP)H:5(VO- V) 

0:5 (dE' IdP)H:5 (Vo - V) 
0:5 (dul dP)H ~W/(P-Po) 
0:5 (du/dP)HSU/ (P-Po) 
(dS/ dE')H ? O 

of the limits of Ineq. (19) would be exceeded before the 
slope of the Hugoniot could take on values pertaining to 
the region in question, i. e., j2(dV/dP)H < -1. Alter­
natively, a Hugoniot of type II necessarily crosses the 
Rayleigh line at a lower pressure as at point 2. This 
state, however, is a thermodynamic equilibrium state 
and could therefore be considered an initial state for 
the shock transition from 2 to 1. However, according 
to Ineq. (40), the supersonic condition would be violated. 
We conclude, therefore, that the branch 3b of Fig. 1, 
for which M 2a> 1, is unattainable. 

The symmetry of Ineq. (19) is reflected in other 
equivalent relations derived by substituting from the 
jump conditions, Eqs. (1)-(3). These are shown in Ta­
ble I. We note that one consequence is that the shock 
velocity is a monotonic function of the particle velocity. 

Let us now consider further the consequences of vio­
lation of each of the limits of Ineq. (19). Figure 19 
shows a case in which the lower limit is violated be­
tween points A and C. From Eq. (31) it is seen that the 
entropy along the Hugoniot curve is a maximum at A 
and a minimum at B with respect to neighboring Hugo­
niot states. If we plot entropy as a function of pressure 
along the Hugoniot, we get a curve like that in Fig. 20. 

From our criteria we deduce that shock waves whose 
final states fall within A-C are unstable. If the final 
pressure falls within this range, a two-wave configura­
tion is produced in which the first wave carries the ma­
terial to state A, and a subsequent shock with initial 
state A carries the material to higher pressure, less 
than C; if the final pressure exceeds C, a single shock 
is again stable. Instabilities of this type and the two­
shock configuration have been widely observed. 12 It is 
important to notice that under these conditions the pres-

p 

FIG. 18. Unstable Hugoniot curves for whichj2 (1.V/dP)H <-l 
at point 1. 

G. R. Fowles 236 



p 

Vo v 
(a) 

(b) 

FIG. 19. Hugoniot curve with region of instability between A 
and C: (a) P-V plane, (b) P-u plane. Point A is entropy 
maximum along H; B is entropy minimum. 

sure of the first wave is stationary at state A with re­
spect to higher shock pressures, (less than C). 

Now, consider a situation where the upper limit of 
Ineq. (19) is exceeded, as illustrated in Fig. 21. In 
this case a plot of E' as function of P has the appear­
ance shown in Fig. 22. The region between A and B is 
thermodynamically unstable according to Ineq. (19). 
Consequently, a shock to state B tends to be stabilized 
in pressure with respect to lower shock pressures. 
This is just the situation required for detonation, and 
we put forward the hypothesis that detonation is indeed 
the result of a minimum in E' along the Hugoniot curve. 

We note that this criterion for detonation is quite dif­
ferent from the Chapman-Jouguet Theory. In that the­
ory detonation corresponds to a local minimum in the 
entropy along the equilibrium Hugoniot curve. More­
over, it requires the assumption of two effective equa­
tions of state, applicable in different regions of the 
shock transition, a frozen equation of state for the ini­
tial shock transition and a relaxed equation of state for 
the equilibrium state finally achieved (Ref. 10, p. 480). 

s 

P 
FIG. 20. Entropy as function of pressure along Hugoniot curve 
of Fig. 19. Cross-hatched region is region of instability. 
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Vo v 

p 

U 

FIG. 21. Hugoniot curve with unstable region 1 < j 2 (iV / dP) H, 

between A and B: (a) P-V plane, (b) P-u plane. Point A is 
relative maximum in E' along H; B is relative minimum. 

In summary then, stable shocks are characterized by 
monotonically increasing entropy and reduced internal 
energy along the Hugoniot curve, and unstable shocks 
are associated with either a local maximum in the de­
rivative (dS/dP)H' or with a local minimum in the de­
rivative (dE' /dP)H' In the former case, a two-shock 
configuration results in which the pressure of the first 
wave is stationary at the entropy maximum. The latter 
case corresponds to detonation with the pressure sta­
tionary at the minimum in E'. 

The unstable regions are shown as the cross-hatched 
areas of Figs. 20 and 22. The upper bound of the un­
stable region of Fig. 20 is determined by the equiva­
lence of the shock velocity there with that at the en­
tropy maximum. The region CA of Fig. 22 is metasta­
ble; shock waves in this range require adequate pertur-

B 

P 

FIG. 22. Plot of E' as function of P along Hugoniot curve of 
Fig. 21. Cross-hatched region is thermodynamically unstable. 
Point B is detonation state. 
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bation to overcome the energy barrier. Just as a liquid 
can be cooled below the stable transition temperature, 
the existence of a minimum in E' does not guarantee 
that a detonation will form; however, state B is the 
thermodynamically more stable state. It may be for 
this reason that detonations are observed to propagate 
more readily in materials that are initially somewhat 
porous and why turbulence is commonly observed behind 
detonations. There is an obvious analogy to the onset 
of turbulence in viscous, steady, subsonic flow. 

VI. CONCLUSIONS 

We have treated the problem of stability of plane 
shock waves by considering the reflection of small am­
plitude acoustic waves from the shock front, and by ir­
reversible thermodynamics. Both approaches yield the 
same criteria for stability, which can be stated as a re­
striction on the relative slopes of the Hugoniot curve 
and the Rayleigh line 

- 1 ~ l(dV / dP) H ~ 1 . 

Violation of the lower limit leads to a two-shock struc­
ture; violation of the upper limit to detonation. 

The thermodynamic treatment requires the recogni­
tion that, at least in an adiabatic mechanical process, 
the entropy production is bounded above as well as be­
low. This can be stated alternatively by the relations, 
applicable to real processes, 

o ~ TdS ~ (p - po) dV, (T > 0) 

or by the equivalent relations, 

o ~ dS; dE' ~ 0 , 

where dE' =dE +PodV, is the reduced internal energy. 

For shock waves E' is also equal to the kinetic ener­
gy density of the shocked state in a coordinate system 
in which the initial state is stationary; conversely it is 
the kinetic energy density of the initial state in a coord­
inate system in which the shocked state is stationary. 

Shocks are thermodynamically unstable whenever 
there is a local maximum in the entropy or a local min­
imum in the reduced internal energy along the Hugoniot 
curve. These correspond to a local maximum in the 
shock velocity and to a local minimum in the particle 
velocity, respectively. In the former case a two-shock 
structure develops in which the pressure of the first 
shock corresponds to the entropy maximum. The latter 
case gives rise to turbulence that tends to stabilize the 

. shock pressure at the minimum in the reduced internal 
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energy. We posit that detonations are instabilities of 
this type. 

Because E' is also the kinetic energy density, there 
is another sense in which the stability criteria can be 
understood. Thus, in a coordinate system fixed in the 
shocked material the shock front tends to produce max­
imum entropy with minimum expenditure of the kinetic 
energy of the incoming material. Instability occurs 
when there are neighboring Hugoniot states that permit 
greater production at less cost. It is tempting to specu­
late that simUar thermodynamic conditions may also be 
valid for biological systems. 

We note that the results are in satisfying agreement 
with a generalized form of the Le Chatelier principle. 
Thus, for stable shocks both the shock velocity and the 
particle velocity increase monotonically with pressure. 
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